45 research outputs found

    Recognition of elementary upper limb movements in an activity of daily living using data from wrist mounted accelerometers

    No full text
    In this paper we present a methodology as a proof of concept for recognizing fundamental movements of the humanarm (extension, flexion and rotation of the forearm) involved in ‘making-a-cup-of-tea’, typical of an activity of daily-living (ADL). The movements are initially performed in a controlled environment as part of a training phase and the data are grouped into three clusters using k-means clustering. Movements performed during ADL, forming part of the testing phase, are associated with each cluster label using a minimum distance classifier in a multi-dimensional feature space, comprising of features selected from a ranked set of 30 features, using Euclidean and Mahalonobis distance as the metric. Experiments were performed with four healthy subjects and our results show that the proposed methodology can detect the three movements with an overall average accuracy of 88% across all subjects and arm movement types using Euclidean distance classifier

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification

    No full text
    In this paper we present a methodology for recognizing three fundamental movements of the human forearm (extension, flexion and rotation) using pattern recognition applied to the data from a single wrist-worn, inertial sensor. We propose that this technique could be used as a clinical tool to assess rehabilitation progress in neurodegenerative pathologies such as stroke or cerebral palsy by tracking the number of times a patient performs specific arm movements (e.g. prescribed exercises) with their paretic arm throughout the day. We demonstrate this with healthy subjects and stroke patients in a simple proof of concept study in whichthese arm movements are detected during an archetypal activity of daily-living (ADL) – ‘making-a-cup-of-tea’. Data is collected from a tri-axial accelerometer and a tri-axial gyroscope located proximal to the wrist. In a training phase, movements are initially performed in a controlled environment which are represented by a ranked set of 30 time-domain features. Using a sequential forward selection technique, for each set of feature combinations three clusters are formed using k-means clustering followed by 10 runs of 10-fold cross validation on the training data to determine the best feature combinations. For the testing phase, movements performed during the ADL are associated with each cluster label using a minimum distance classifier in a multi-dimensional feature space, comprised of the best ranked features, using Euclidean or Mahalanobis distance as the metric. Experiments were performed with four healthy subjects and four stroke survivors and our results showthat the proposed methodology can detect the three movements performed during the ADL with an overall average accuracy of 88% using the accelerometer data and 83% using the gyroscope data across all healthy subjects and arm movement types. The average accuracy across all stroke survivors was 70% using accelerometer data and 66% using gyroscope data. We also use a Linear Discriminant Analysis (LDA) classifier and a Support Vector Machine (SVM) classifier in association with the same set of features to detect the three arm movements and compare the results to demonstrate the effectiveness of our proposed methodology

    Analysis of Iophenoxic Acid Analogues in Small Indian Mongoose (\u3ci\u3eHerpestes Auropunctatus\u3c/i\u3e) Sera for Use as an Oral Rabies Vaccination Biological Marker

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations

    Analysis of Iophenoxic Acid Analogues in Small Indian Mongoose (\u3ci\u3eHerpestes Auropunctatus\u3c/i\u3e) Sera for Use as an Oral Rabies Vaccination Biological Marker

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations

    Placebo Oral Rabies Vaccine Bait Uptake by Small Indian Mongooses (\u3ci\u3eHerpestes auropunctatus\u3c/i\u3e) in Southwestern Puerto Rico

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is a rabies reservoir in areas of the Caribbean including Puerto Rico, but no rabies vaccination program targeting this host exists. We used two derivatives of iophenoxic acid (IPA) to evaluate placebo oral rabies vaccine bait uptake by mongooses in southwestern Puerto Rico. We hand-distributed baits at an application rate of 200 baits/km2 at three, 400 ha, sites during autumn 2016 and spring 2017. Each site contained 90–100 cage traps in a 100 ha central trapping area. We used ethyl-IPA as a biological marker during the autumn and methyl-IPA during the spring. We live captured mongooses for 10 consecutive days, beginning 1 wk following bait application. We obtained a serum sample from captured mongooses and analyzed the sera for ethyl- and methyl-IPA by liquid chromatography mass spectrometry. During autumn 2016, 63% (55/87) mongooses sampled were positive for ethyl-IPA. In spring 2017, 69% (85/123) of mongooses were positive for methyl-IPA. Pooling seasons, accounting for recaptures between years, and disregarding marker type, 74% (133/179) unique mongooses were positive for IPA biomarker, indicating bait consumption during either the autumn, spring, or both trials. We conclude that distributing baits at an application rate of 200 baits/km2 is sufficient to reach over 60% of the target mongoose population in dry forest habitats of Puerto Rico

    Movement fluidity of the impaired arm during stroke rehabilitation

    No full text
    We present an initial study on the measure of movement fluidity of the upper arm for 4 stroke patients for a duration of 3 weeks as they performed an archetypal activity of daily living – ‘making-a-cup-of-tea’ in an uncontrolled environment. Results of two complimenting measures – jerk metric and peak number computed from accelerometer data on the wrist are in agreement with the clinical scores from the Box and Block test and the Nine Hole Peg tes

    Effectiveness of myAirCoach: A mHealth Self-Management System in Asthma

    Get PDF
    Background: Self-management programs have beneficial effects on asthma control, but their implementation in clinical practice is poor. Mobile health (mHealth) could play an important role in enhancing self-management. Objective: To assess the clinical effectiveness and technology acceptance of myAirCoach-supported self-management on top of usual care in patients with asthma using inhalation medication. Methods: Patients were recruited in 2 separate studies. The myAirCoach system consisted of an inhaler adapter, an indoor air-quality monitor, a physical activity tracker, a portable spirometer, a fraction exhaled nitric oxide device, and an app. The primary outcome was asthma control; secondary outcomes were exacerbations, quality of life, and technology acceptance. In study 1, 30 participants were randomized to either usual care or myAirCoach support for 3 to 6 months; in study 2, 12 participants were provided with the myAirCoach system in a 3-month before-after study. Results: In study 1, asthma control improved in the intervention group compared with controls (Asthma Control Questionnaire difference, 0.70; P = .006). A total of 6 exacerbations occurred in the intervention group compared with 12 in the control group (hazard ratio, 0.31; P = .06). Asthma-related quality of life improved (mini Asthma-related Quality of Life Questionnaire difference, 0.53; P = .04), but forced expiratory volume in 1 second was unchanged. In study 2, asthma control improved by 0.86 compared with baseline (P = .007) and quality of life by 0.16 (P = .64). Participants reported positive attitudes toward the system. Discussion: Using the myAirCoach support system improves asthma control and quality of life, with a reduction in severe asthma exacerbations. Well-validated mHealth technologies should therefore be further studied
    corecore